DC-Netzteile 4kW - 8kW

Datenblatt

Schnelles Schaltnetzteil für schnell veränderliche Lasten, zum Laden von Kondensatorbänken oder die Versorgung von HF-Generatoren

Kurzdaten

Eigenschaft	Wert	Einheit
Ausgangsstrom	53-160	Α
Ausgangsspannung	50-150	V
Ausgangsleistung	4000-8000	W

Anwendungen

- Schnell veränderliche Lasten
- Hochfrequenzgeneratoren
- Galvanik
- Schweißgeräte
- Hochleistungs-Laserdiodentreiber
- Verlustarmer Vorregler für linearen Laserdiodentreiber
- Ladegerät für Kondensatorbank in Blitzgeräten

Vorteile

- Unmittelbare Reaktion auf Überstrom, Überspannung oder Kurzschluß am Ausgang
- Schnelle Regelung und Begrenzung des Ausgangsstroms
- Spannungsmodulation bis 100 Hz
- Analoger Steuereingang

Ihre Aufgabenstellung

Viele Anwendungen erfordern eine einstellbare und modulierbare Gleichspannungsvers orgung an einer schnell veränderlichen Last. Beispiele sind Plasmaerzeugung, Schweißen, Galvanisieren oder das Nachladen der Kondensatorbank in einem Blitzgerät.

Um hier eine stabile Spannung zu erzeugen, muß das Netzteil schnell die Stromstärke verändern können.

Unsere Lösung ist Ihr Vorteil

Eine spezielle Schaltungstechnik vermeidet jede Beschränkung der Stromregelgeschwindig keit, obwohl ein isolierender Transformator verwendet wird. Ausgangsspannung und -strom werden Puls für Puls geregelt. Deshalb erfolgt eine sofortige Reaktion auf Überspannung oder Überstrom. Es gibt keine Beschränkung für die Wiederholrate von Überlast oder Kurzschluß.

Dieses Netzteil ist die erste Wahl, wenn schnell veränderliche Lasten anzutreiben sind. Die Stromversorgung ist außergewöhnlich robust, weil jeder Überlastzustand von selber vermieden wird.

Mit großer Reserve ausgelegte Leistungshalbleiter ermöglichen niedrige Betriebstemperaturen und damit eine hohe Betriebssicherheit.

Die kompakte Bauform und die offene Bauweise ermöglichen die einfache Integration in Ihr Projekt, sowohl in technischer als auch in kaufmännischer Hinsicht.

Funktion

Ein Mikrocontroller steuert den Betrieb einschließlich Sanftanlauf und Begrenzung des Einschaltstroms. Es ist weitere Rechenleistung verfügbar, um kompliziertere Regelalgorithmen zu realisieren, wie zum Beispiel Rampenfunktionen für Strom oder Spannung, Leistungsregelung oder Reaktion auf bestimmte Lastzustände. Alle Betriebsparameter und Einstellungen sind im Speicher abgelegt. Also gibt es keine Potentiometer, die der Endanwender verstellen könnte.

Die Ausgangsspannung ist stufenlos von 0 bis 100% einstellbar. Dies geht über eine eine analoge Spannung zwischen 0 und 10V. Ein- und Austasten erfolgt über einen separaten Freigabeeingang.

Ein zusätzliches Hilfsnetzteil liefert 10A bei 15V.

Gebrauch und Anwendung

Die Einheiten sind fertig zur Montage auf Wasser- oder Luftkühler.

Ein Hochleistungs-Netzfilter zur Verminderung der Störemissionen ist als Zubhör lieferbar. Eine aktive Einschaltstrombegrenzung vermeidet einen übermäßigen Einschaltstrom, wenn die Einheit ans Netz angeschlossen wird. Die Netzleitung wird an einer Schraubklemmer angeschlossen. Die Ausgangsspannung ist an Bolzen abgreifbar.

Die Außenabmessungen sind 400 x 400 mm mit einer niedrigen Bauhöhe von nur 65 mm. Die Maße ermöglichen den Einbau in ein 19-Zoll-Gehäuse mit nur zwei Höheneinheiten, einschließlich Wasserkühler.

Ein passendes Netzfilter ist separat lieferbar. Bitte nennen Sie uns Ihre Anforderungen.

Technische Daten

Betriebsbereich	min	typ	max	Einheit
Ausgangsspannung	0		(*1)	V
Ausgangsstrom	0		(*1)	Α
Ausgangsleistung		4/8		kW
Hilfsversorgung Spannung (*2)		15		V
Hilfsversorgung Strom		10		Α

^(*1) Die verschiedenen Ausgangsspannungen und -ströme entnehmen Sie bitte den Bestelldaten.

^(*2) Der Bezugspunkt der Hilfsspannung ist mit dem Bezugspunkt der Hauptspannung verbunden.

Eigenschaften	min	typ	max	Einheit
Anstiegszeit Strom 10/90% (1)		100		μs
Abfallzeit Strom 90/10%		100		μs
Wechselspannung Ausgang		200		mV _{eff}

(1) Anstieg- und Abfallzeit sind abhängig von der anliegenden Last. Die angegebenen Werte gehen von 50V Ausgangsspannung und vollem Ausgangsstrom aus.

Umgebung	min	typ	max	Einheit
Kühlkörpertemperatur	0		40	°C
Lagertemperatur	-10		70	°C
Netzspannung	3x 360	3x 400	3x 440	V _{rms}
Netzfrequenz	3x 45		3x 65	Hz

Abmessungen	min	typ	max	Einheit
Höhe		65		mm
Breite		260		mm
Tiefe		400		mm

Bestelldaten

Nummer	Beschreibung
45.17.150.4405	4kW 3x400Vac 0-50V 80A
45.17.150.7405	8kW 3x400Vac 0-50V 160A
45.17.150.7415	8kW 3x400Vac 0-150V 53A

© Redline Technologies Elektronik GmbH - Stand 2013-12-13